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1. Introduction

Due to the celebrated duality relation between string theory in anti-de-Sitter (AdS) back-

grounds and conformal field theories on the boundary [1], it is nowadays of great interest to

find new AdS solutions to string/M-theory and study their field theory duals. Several dif-

ferent avenues have been taken to accomplish this goal. For instance, when one replaces the

spheres of the maximally supersymmetric examples by squashed spheres new AdS/CFT

duality pairs can be obtained [2]. When the squashed sphere is a toric Sasaki-Einstein

manifold, one can identify the dual gauge theory and nontrivial predictions of the duality

relation can be shown to match the field theory results [3]. In particular, the field theory

computation of Weyl anomaly using the a-maximization method [4] is shown to agree with

the volume of toric Sasaki-Einstein manifolds through Z-minimization developed in [5].

Another approach which proved to be very fruitfull is to use the lower-dimensional gauged

supergravity theories as the springboard, i.e. first to find nontrivial AdS vacua in low

dimensions and then uplift the solutions to 10 or 11 dimensions. They correspond to fixed

points of the renormalization group equation confronted when the maximally supersym-

metric system is perturbed by a relevant operator. See, for instance ref. [6].

When we restrict ourselves to supersymmetric solutions we can take a more systematic

approach to study the generic forms of such vacua as in [7, 8]. Instead of trying to solve

the Killing spinor equation employing a specific ansatz, one can derive the general form of

the solution by making use of the information given by the Killing spinor equations. One

constructs various spinor bilinears from the Killing spinor and the algebraic and differential

conditions derived from the Killing spinor equation help to restrict the local form of the

metric. For lower dimensional systems with less supersymmetry it is sometimes possible

to classify all supersymmetric solutions. Several important class of new solutions have

been found using this method. Supersymmetric black ring solutions and Sasaki-Einstein

manifolds Y p,q [9, 10] are among them. A valuable insight into the gauge/gravity duality
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has been obtained from the analysis of IIB string solutions containing two factors of three-

spheres with unbroken supersymmetry [11]. They are dual to the 1/2-BPS operators of

N = 4 super Yang-Mills theory and it was shown that a two-dimensional slice of the

supergravity solution can be identified as fluctuations of free fermion phase space.

In this work we study IIB vacua with a AdS3 factor and establish how supersymmetry

restricts the local form of the metric and field fluxes. In M-theory, a comprehensive analysis

for supesymmetric AdS3 solutions has been undertaken in [12]. To simplify the analysis

we consider pure D3-brane configurations, i.e. the nontrivial fields of IIB supergravity

are only Ramond-Ramond 5-forms and metric. We find that the transverse 7-dimensional

space takes the form of a U(1) fibration over a complex 3-dimensional Kahler space. If the

whole 7-dimensional space is compact we obtain a new AdS3 vacua. Otherwise the solution

should describe a BPS operator of higher dimensional conformal field theory, most likely

4-dimensional. In the next section we present our setup in detail, and present how the

supersymmetry provides relations between various differential forms in the internal space.

We also illustrate how the well-known AdS solutions can be reproduced when we choose

appropriate 6 dimensional Kahler manifolds. We conclude with comments and suggestions

for future works.

2. Ansatz

It is the goal of this work to study supersymmetric IIB solutions with a AdS3 factor

from D3-branes. Among the various fields of IIB supergravity we allow to turn on the

metric and Ramond-Ramond five-forms only. We plan to derive how the existence of a

nontrivial Killing spinor solution restricts the local form of the metric and the five-form

field strength. Having fixed a 3 dimensional part of the metric, we get an effective system

which is 7 dimensional.

We introduce a scalar field A and a two-form field strength F as follows.

ds2 = e2A(AdS3) + gabdxadxb, a, b = 1, 2, . . . 7. (2.1)

F (5) = (1 + ∗)VolAdS3
∧ F. (2.2)

The dilatino variation vanishes trivially and we only need to consider the gravitino variation

equation,

∇M ε +
i

480
ΓM1...M5F

(5)
M1...M5

ΓM ε = 0. (2.3)

It is required to introduce a specific basis for the gamma matrices which respect the

dimensional decomposition we consider here.

Γµ = σ1 ⊗ γµ ⊗ 1, µ = 0, 1, 2. (2.4)

Γa = σ2 ⊗ 1 ⊗ γa, a = 3, . . . 9. (2.5)

In this basis the 10 dimensional chirality projection implies σ3ε = +ε. On AdS3 the Killing

spinor satisfies the following property.

∇µε =
a

2
γµε, a = ±1. (2.6)
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Now we can rephrase the Killing spinor equation in terms of a 7 dimensional Dirac spinor

η. We obtain the following set of equations,

∇aη − e−3A

4
F/γaη = 0, (2.7)

(

∂/A +
e−3A

2
F/ − iae−A

)

η = 0. (2.8)

In 7 dimensions with Euclidean signature it is possible to define Majorana spinors but

from the Killing equations above it is obvious we need to consider a Dirac spinor. Since η

has 8 components generic Killing spinor solutions should preserve 1/8 supersymmetry. We

might understand this statement as the supersymmetry of D3-branes wrapping a Kahler

two-cycle in a Calabi-Yau four-fold which consists of the 2 tangential and 6 transverse

directions of the D3-brane world-volume.

3. Spinor bilinears

One can construct differential forms of various ranks defined on the 7 dimensional space

as spinor bilinears.

C = η†η, (3.1)

Ka = η†γaη, (3.2)

Yab = iη†γabη, (3.3)

Zabc = iη†γabcη, (3.4)

Wabcd = η†γabcdη, (3.5)

Xabcde = η†γabcdeη, (3.6)

Pabcdef = iη†γabcdefη. (3.7)

One can also consider complex conjugate spinors to construct differential forms which are

complex valued. Because of the antisymmetry of gamma matrices only 3- and 4-forms are

non-vanishing 1, we define

Ωabc = ηT γabcη, (3.8)

Ψabcd = ηT γabcdη. (3.9)

Now one can make use of the 7 dimensional Killing equations to derive algebraic and

differential relations between the spinor bilinears. For instance,

∇a(η
†η) = ∇aη

†η + η†∇η

= −e−3AFabη
†γbη

= ∂aAη†η, (3.10)

which implies η†η = eA.

1In our convention the 7 dimensional gamma matrices are all antisymmetric.
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Proceeding in the same way one finds that K in fact defines a Killing vector, i.e.

∇(aKb) = 0. We choose a local coordinate patch such that K = ∂ψ and write the 7

dimensional metric as follows,

ds2 = gabdxadxb a, b = 1, . . . 7.

= e2φ(dψ + B)2 + gijdxidxj , i, j = 1, . . . , 6. (3.11)

φ is a 6-dimensional scalar which is given as the norm of K through K2 = e2φ and B is a

one-form in 6 dimensions.

One can in fact see that φ = A. From the algebraic Killing equation eq. (2.8) it follows

ηT η = 0. If we introduce a pair of Majorana spinors to write

η =
1√
2
(η1 + iη2) , (3.12)

it follows that ηT
1 η1 = ηT

2 η2 and ηT
1 η2 = 0. We also have η†γiη = 0, which implies ηT

1 γiη2 =

0. Because of the orthogonality of gamma matrices and that they are 8 dimensional, it

is obvious that η, γiη, γψη span the whole spinor space. Since η1 is orthogonal to η2 and

γiη2, one concludes that η1 ∝ γψη2. Since ηi are real spinors of the same magnitude, we

conclude η1 = ±iγψ̂η2, which implies the Dirac spinor η is chiral on 6 dimensional space

defined by xi in eq. (3.11).2 Then K2 = e2φ = (η†γψη)(η†γψη) = (η†η)2 = e2A. The chiral

spinor η thus defines a SU(3) structure on the 6 dimensional base space, Y defines an

almost complex structure and Ω is a holomorphic 3-form.

Above procedure of exploiting Killing equations can be repeated for other differential

forms. One first uses the differential relation to compute the exterior derivative, and the

result is simplified by making use of the algebraic equation. We summarize the result as

follows,

d(e2AK) = −4F − 2aeAY, (3.13)

d(eAY ) = 0, (3.14)

d(e4AZ) = 4ae3AW − 4eAY ∧ F, (3.15)

d(e3AW ) = 0, (3.16)

d(e2AX) = 2aeAP, (3.17)

dP = 0. (3.18)

Now from the chirality condition of η in 6 dimensions all the higher forms can be written

as a wedge product of K,Y and only the first two equations in the above are independent.

One also derives

d(e2AΩ) = 2aiK ∧ Ω. (3.19)

2Here we use the notation where the hatted indices denote orthonormal frame, i.e. {γâ, γ
b̂
} = 2δ

âb̂
.
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Now one can easily see that for the rescaled metric ḡij = e2Agij , J = aeAY and

ω = e2Ae2aiψΩ provide the canonical two-form and the holomorphic three-form of the

almost complex structure defined by Y . Then dJ = 0 and dω = 2aiB ∧ ω imply the

complex structure is integrable and 2dB is the Ricci-form of the Kahler manifold.

There is another equation derived from eq. (2.8) when we multiply ηT , which relates the

6 dimensional curvature scalar with A. We do not find any other independent conditions

from the Killing equations eq. (2.7), (2.8), so we here summarize the equations which

guarantee the supersymmetry of the configuration,

F = F̄ + K ∧ e2AdA, (3.20)

e4AR = −8F̄ − 4J, (3.21)

J ijRji = 8e−2A, (3.22)

where F̄ is the two-form field restricted to 6 dimensional space and J ij = ḡikḡjlJkl. R
is the Ricci form. It is clear that once the Kahler space is fixed the above equations can

determine A,F , thus the entire 10 dimensional solution.

It is an established fact that a supersymmetric configuration with a timelike Killing

spinor satisfies the classical field equations provided the form-field equations of motion and

the Bianchi identities are satisfied [13]. The Bianchi identity dF = 0 is a consequence of

supersymmetry as can be easily seen from eq. (3.13) and eq. (3.14). The form-field equation

of motion d(e−3A ∗ F ) = 0 can be checked most easily using the second line of eq. (3.10).

As we take another covariant derivative, after some algebra we obtain

∇2eA − 6eA(∇A)2 + e−A − 1

32
e3ARijR

ij = 0 , (3.23)

where the norms are taken with the rescaled metric ḡ. Since the scalar curvature of the

Kahler basis is 8e−2A, this equation imposes a purely geometric condition on the 6 di-

mensional Kahler basis. Instead of re-writing the above equation in terms of the Kahler

potential and trying to find general solutions, in the remainder of this article we illustrate

how well-known solutions can be rephrased following our result.

4. Examples

We now construct explicit solutions from the equations presented in the last section and

in particular show how the well-known AdS solutions can be rephrased in our general

framework.

As the simplest case we choose the 6 dimensional Kahler basis to be Einstein or prod-

ucts of Kahler-Einstein spaces, i.e. A = const. Eq. (3.23) then becomes a simple alge-

braic relation involving the dimensionalities of Kahler-Einstein manifolds. We get, using

R = 8e−2A from eq. (3.22),

R2 = 2RijR
ij . (4.1)

It is easy to see that the only possibility is S2 × T 4 if we exclude the use of hyperbolic

spaces. This case corresponds to the most well-known example of IIB supergravity with a

– 5 –



J
H
E
P
0
1
(
2
0
0
6
)
0
9
4

AdS3 factor, i.e. AdS3 × S3 × T 4 which has 1/2 unbroken supersymmetry. When we set

A = 0 the radius of S2 is 1/2, and if we introduce θ, φ as the coordinates on S2 with the

standard metric, the 7 dimensional metric is written as

ds2 =
1

4

(

(dψ + cos θdφ)2 + dθ2 + sin2 θdφ2
)

+ (T 4-part). (4.2)

The 10 dimensional solution is interpreted as the near-horizon limit of two intersecting

D3-branes on a string.

As the second example we consider the type of solutions AdS5 × SE5 where SE5 is a

5 dimensional Sasaki-Einstein space. The Ramon-Ramond five-form is given as the sum of

AdS5 and SE5 volume form. These solutions correspond to the near horizon limit of D3-

branes put on a singular point of Calabi-Yau space. It is well known that a Sasaki-Einstein

space can be always written as a Hopf-fibration over a Kahler-Einstein space, i.e.

ds2 = (dα + σ/3)2 + ds2
KE, (4.3)

with dσ/6 the Kahler form of the Kahler-Einstein base. The constant norm Killing vector

∂α is called Reeb vector.

The simplest examples of Kahler-Einstein space are given from complex projective

spaces CPn. In 4 dimensions we have two obvious choices, CP2 and CP1×CP1. The

former gives rise to S5, the latter T 1,1 respectively. The metric cone of T 1,1 is the conifold

and the dual gauge theory living on the D-branes put on conifold singularity is understood

in detail [14].

Until recently T 1,1 has been the only 5 dimensional Sasaki-Einstein manifold whose

metric is known explicitly. A couple of new, infinite class of Sasaki-Einstein manifolds were

discovered recently [10, 15]. They all turned out to be toric, and the dual conformal field

theories given as quiver gauge theories have been identified.

It is possible to reconstruct these solutions from our equations. It is just a matter

of choosing the right 6 dimensional Kahler space. In order to determine the right Kahler

space we try to rewrite AdS5 × SE5 solutions.

ds2 = (AdS5) + (SE5)

= cosh2 ρ(AdS3) + dρ2 + sinh2 ρdφ2 +
(

dα +
σ

3

)2
+ (KE4)

= cosh2 ρ(AdS3) + cosh2 ρ

(

dφ +
dα̃ + σ/3

cosh2 ρ

)2

+

+
1

cosh2 ρ

(

cosh2 ρ(dρ2 + (KE4)) + sinh2 ρ(dα̃ +
σ

3
)2

)

, (4.4)

where we set α̃ = α − φ. The Kahler form of the 6 dimensional base space is written as

follows,

J = cosh ρ sinh ρdρ ∧ (dα̃ + σ/3) + sinh2 ρJKE. (4.5)

JKE is the Kahler form of the 4 dimensional Kahler-Einstein manifold which gives rise to

the Sasaki-Einstein manifold. One can check cosh2 ρ and 2d
(

dα̃+σ/3

cosh2 ρ

)

corrrectly give the

scalar curvature and the Ricci-form of the 6 dimensional Kahler space.
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The next example is the 1/2-BPS solutions of IIB supergravity obtained in [11]. Solu-

tions with SO(4)×SO(4) symmetry, i.e. having two factors of three-sphere are studied and

argued to be dual to generic 1/2-BPS operators of N = 4 super Yang-Mills theory. Our

result can be easily translated into the case of IIB solutions with one S3 instead of AdS3

through double Wick rotation. The spacelike Killing vector becomes a timelike Killing

vector fibred again over a 6 dimensional Kahler manifold. The solution takes the following

form,

ds2 = −h−2(dt + Vidxi)2 + h2(dy2 + dxidxi) + yeGdΩ2
3 + ye−GdΩ̃2

3,

h−2 = 2y cosh G,

y∂yVi = εij∂jz, y(∂iVj − ∂jVi) = εij∂yz,

z =
1

2
tanh G,

F = dBt ∧ (dt + V ) + BtdV + dB̂,

F̃ = dB̃t ∧ (dt + V ) + B̃tdV + d ˆ̃B,

Bt = −1

4
y2e2G, B̃t = −1

4
y2e−2G,

dB̂ = −1

4
y3 ∗3 d

(

z + 1/2

y2

)

, d ˆ̃B = −1

4
y3 ∗3 d

(

z − 1/2

y2

)

, (4.6)

where F, F̃ are defined from the dimensional reduction of Ramond-Ramond 5-form through

F(5) = Fµνdxµ ∧ dxν ∧ dΩ3 + F̃µνdxµ ∧ dxν ∧ dΩ̃3. (4.7)

The full solution is determined by a single function z(x1, x2, y), which satisfies the following

equation.

∂i∂iz + y∂y(
∂yz

y
) = 0. (4.8)

In order to give a regular solution it is argued in [11] that z = ±1
2 on the y = 0 plane.

It turns out that once the the shape of the filled region defined by z = 1
2 on the (x1, x2)-

plane is specified the full 10 dimensional solution is determined. Then the filled region is

interpreted as the fermi see of the (fermionized) Yang-Mills eigenvalues. Since our result

applies to any supersymmetric solutions, any solutions satisfying eqs. (4.6), (4.8) can be

written based on a 6 dimensional Kahler manifold.

We first write the metric of S̃3 in terms of left-invariant forms

dΩ̃2
3 =

1

4
(σ2

1 + σ2
2 + σ2

3), (4.9)

and introduce polar coordinates for the 2 dimensional space (x1, x2) as

dxidxi = dr2 + r2dφ2. (4.10)

In order to see the hidden Kahler structure it turns out useful to mix the two Killing vectors

∂t and σ3. When we rewrite σ3 → σ3 + 2dt, the metric can be written as

ds2 = yeGdΩ2
3 − yeG

(

dt +
V

h2yeG
− σ3

2e2G

)2

+
1

yeG
× (4.11)
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×
[

h2yeG(dr2 + r2dφ2) +
y

4h2eG
(σ3 − 2V )2 + h2yeGdy2 +

y2

4
(σ2

1 + σ2
2)

]

The Kahler form is given as

J = −
(

z +
1

2

)

rdr ∧ dφ +
y2

4
σ1 ∧ σ2 +

y

2
dy ∧ (σ3 − 2V ). (4.12)

One can easily check it is indeed closed, and compute the Ricci-form to show that it is

given as d( 2
2z+1V − e−2Gσ3).

5. Discussion

In this work we analyzed the D3-brane configurations which lead to AdS3 solutions. The

full 10 dimensional solution is determined once a 6 dimensional Kahler space is chosen

which satisfies a certain condition for the curvature, given in eq. (3.23). With appropriate

Kahler manifolds we can reconstruct known IIB solutions which contains an AdS3 factor.

Let us emphasize that, since the higher dimensional AdS spaces can be written as a bundle

over a lower dimensional AdS, we can describe all higher dimensional AdS spaces from

5-forms in terms of our result.

It would be very interesting to construct new AdS3 solutions using our result and

analyze their gauge theory duals. One can use hyperbolic Kahler manifolds as part of the

6 dimensional Kahler base manifold to find more solutions to eq. (4.1). This is far from

surprising, and in fact very reminiscent of the general results of wrapped brane solutions

reported in [16], where numerous AdS solutions have been obtained through wrapping

branes on hyperbolic supercycles.

It is straightforward but very interesting to consider the Wick rotated case of our

solutions: instead of assuming an AdS3 factor one considers S3. Supersymmetry and the

SO(4) isometry imply that in the dual picture these solutions can describe pure scalar

operators of N = 4,D = 4 super Yang-Mills which are in general 1/8-BPS. They can

also describe 1/2-BPS operators of certain N = 1,D = 4 superconformal field theories.

From the analysis in ref. [11] we know that part of the string theory spacetime can be

mapped to the phase space of the Yang-Mills eigenvalue dynamics. According to our result

supersymmetry requires that the phase space of eigenvalue dynamics for generic BPS states

should have not only symplectic, but Kahler structure. It will be very exciting if one can

find a prescription to extract the information on the dual gauge theory and the fluctuation

thereof, from the 6 dimensional Kahler geometry. The geometric constraint eq. (3.23)

would tell us how the eigenvalue distribution is transcribed into general relativity. The

relevant matrix model description of the eigenvalue dynamics for N = 4,D = 4 Yang-Mills

theory has been discussed in [17]. We hope to be able to address this issue further in the

near future.
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